<div class="eI0"> <div class="eI1">Modelo:</div> <div class="eI2"><h2><a href="http://www.dwd.de/" target="_blank" target="_blank">ICON</a>(ICOsahedral Nonhydrostatic general circulation model) from the German Weather Service</h2></div> </div> <div class="eI0"> <div class="eI1">Actualização:</div> <div class="eI2">4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 12:00 WET</div> </div> <div class="eI0"> <div class="eI1">Resolution:</div> <div class="eI2">0.125° x 0.125°</div> </div> <div class="eI0"> <div class="eI1">parâmetro:</div> <div class="eI2">Geopotential in 850 hPa (solid, black lines) and Vorticity advection in 10<sup>5</sup>/(s*6h) (colored lines)</div> </div> <div class="eI0"> <div class="eI1">Descrição:</div> <div class="eI2"> The two types of vorticity advection are positive (PVA) and negative vorticity advection (NVA). <img border="0" src="//www.weatheronline.pt/daten/expertgifs/v_adv_en.jpg" align="left"> The closed circles in the figure show the 850 hPa absolute vorticity lines, the others the 850 hPa height lines. When an air parcel is moving from an area higher vorticity to an area lower vorticity this is called: PVA (red color). The other way around is called: NVA (blue color). PVA is associated with upper-air divergence, i.e. upward vertical motion. NVA is associated with down ward vertical motion. Therefore, PVA at 500 hPa is strongest above a surface low, while NVA at 500 hPa is strongest above a surface high. <br> In operational meteorology Vorticity advection maps are used to identify areas with vertical air motion to see where clouds, precipitation or clear conditions are likely to occur. Keep in mind, however, that PVA is not the same as upward vertical motion. Here temperature advection is important too.<br> </div> </div> <div class="eI0"> <div class="eI1">ICON:</div> <div class="eI2"><a href="http://www.dwd.de/" target="_blank">ICON</a> The ICON dynamical core is a development initiated by the Max Planck Institute for Meteorology (MPI-M) and the Opens external link in current windowGermany Weather Service (DWD). This dynamical core is designed to better tap the potential of new generations of high performance computing, to better represent fluid conservation properties that are increasingly important for modelling the Earth system, to provide a more consistent basis for coupling the atmosphere and ocean and for representing subgrid-scale heterogeneity over land, and to allow regionalization and limited area implementations.<br> </div></div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">A previsão numérica do tempo usa o estado instantâneo da atmosfera como dados de entrada para modelos matemáticos da atmosfera, com vista à previsão do estado do tempo.<br> Apesar dos primeiros esforços para conseguir prever o tempo tivessem sido dados na década de 1920, foi apenas com o advento da era dos computadores que foi possÃvel realizá-lo em tempo real. A manipulação de grandes conjuntos de dados e a realização de cálculos complexos para o conseguir com uma resolução suficientemente elevada para produzir resultados úteis requer o uso dos supercomputadores mais potentes do mundo. Um conjunto de modelos de previsão, quer à escala global quer à escala regional, são executados para criar previsões do tempo nacionais. O uso de previsões com modelos semelhantes ("model ensembles") ajuda a definir a incerteza da previsão e estender a previsão do tempo bastante mais no futuro, o que não seria possÃvel conseguir de outro modo.<br> <br>Contribuidores da Wikipédia, "Previsão numérica do tempo," Wikipédia, a enciclopédia livre, <a href="http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675" target="_blank">http://pt.wikipedia.org/w/index.php?title=Previs%C3%A3o_num%C3%A9rica_do_tempo&oldid=17351675</a> (accessed fevereiro 9, 2010). <br> </div></div> </div>