Modelo:

GDAS: "Global Data Assimilation System"

Actualizado:
4 times per day, from 00:00, 06:00, 12:00 and 18:00 UTC
Tiempo medio de Greenwich:
12:00 UTC = 13:00 CET
Resolutión:
0.25° x 0.25°
Parámetro:
Geopotential height Temperature at 500 hPa
Descripción:
Geopotential height at 500 hPa (solid line)
Temperature at 500 hPa (colored, dashed)

The maps show the predominant tropospheric waves (trough or ridge). They virtually control the ''weather'' (dry, warm / wet, cold) and the long waves drive the smaller synoptic waves. Thus, this upper-level chart illustrates the dynamics of our atmosphere.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.

Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
GDAS
The Global Data Assimilation System (GDAS) is the system used by the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) model to place observations into a gridded model space for the purpose of starting, or initializing, weather forecasts with observed data. GDAS adds the following types of observations to a gridded, 3-D, model space: surface observations, balloon data, wind profiler data, aircraft reports, buoy observations, radar observations, and satellite observations.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).