<div class="eI0"> <div class="eI1">Model:</div> <div class="eI2"><h2>Times Series from the CMC</h2></div> </div> <div class="eI0"> <div class="eI1">Ververst:</div> <div class="eI2">Update monthly</div> </div> <div class="eI0"> <div class="eI1">Greenwich Mean Time:</div> <div class="eI2">12:00 UTC = 14:00 MEZT</div> </div> <div class="eI0"> <div class="eI1">Resolutie:</div> <div class="eI2">1.0° x 1.0°</div> </div> <div class="eI0"> <div class="eI1">Parameter:</div> <div class="eI2">Geopotentiaal op 925 hPa (doorgetrokken lijn) en Temperatuur op 925 hPa(gekleurd, stippellijn) </div> </div> <div class="eI0"> <div class="eI1">Beschrijving:</div> <div class="eI2"> Deze kaart geeft door samengedrukte isothermen meestal duidelijk de positie van fronten aan. Daarnaast is de 850-temperatuur (ca. 1500m boven zeeniveau) een belangrijke maat voor de verwachte maximumtemperatuur aan de grond (2m). In veel wintersituaties (vaak bij rustig weer) is dit verband er niet. </div> </div> <div class="eI0"> <div class="eI1">Cluster of Ensemble Members:</div> <div class="eI2"> 20 members of an ensemble run are divided into different clusters which means groups with similar members according to the hierarchical "Ward method" The average surface pressure of all members in each cluster are computed and shown as isobares. The number of members in each cluster determines the probability of the forecast (see percentage) </div> </div> <div class="eI0"> <div class="eI1">Dendrogram:</div> <div class="eI2"> A dendrogram shows the multidimensional distances between objects in a tree-like structure. Objects that are closest in a multidimensional data space are connected by a horizontal line forming a cluster. The distance between a given pair of objects (or clusters) are indicated by the height of the horizontal line. [http://www.statistics4u.info/fundstat_germ/cc_dendrograms]. The greater the distance the bigger the differences. </div> </div> <div class="eI0"> <div class="eI1">NWP:</div> <div class="eI2">Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.<br> <br>Wikipedia, Numerical weather prediction, <a href="http://en.wikipedia.org/wiki/Numerical_weather_prediction" target="_blank">http://en.wikipedia.org/wiki/Numerical_weather_prediction</a>(as of Feb. 9, 2010, 20:50 UTC).<br> </div></div> </div>